transeq

 

Function

Translate nucleic acid sequences

Description

Transeq ranslates nucleic acid sequences to the corresponding peptide sequence.

It can translate in any of the 3 forward or three reverse sense frames, or in all three forward or reverse frames, or in all six frames.

It can translate specified regions corresponding to the coding regions of your sequences.

It can translate using the standard ('Universal') genetic code and also with a selection of non-standard codes.

Termination (STOP) codons are translated as the character '*'.

The output peptide sequence is always in the standard one-letter IUPAC code.

Usage

Here is a sample session with transeq

To translate a sequence in the first frame (starting at the first base and proceeding to the end):


% transeq tembl:paamir amir.pep 
Translate nucleic acid sequences

Go to the input files for this example
Go to the output files for this example

Example 2

To translate a sequence in the second frame:


% transeq tembl:paamir amir.pep -frame=2 
Translate nucleic acid sequences

Go to the output files for this example

Example 3

To translate a sequence in the first frame in the reverse sense (starting at the last frame 1 codon and proceeding to the start):


% transeq tembl:paamir amir.pep -frame=-1 
Translate nucleic acid sequences

Go to the output files for this example

Example 4

To translate a sequence in all three forward frames:


% transeq tembl:paamir amir.pep -frame=F 
Translate nucleic acid sequences

Go to the output files for this example

Example 5

To translate a sequence in all three reverse frames:


% transeq tembl:paamir amir.pep -frame=R 
Translate nucleic acid sequences

Go to the output files for this example

Example 6

To translate a sequence in all six forward and reverse frames:


% transeq tembl:paamir amir.pep -frame=6 
Translate nucleic acid sequences

Go to the output files for this example

Example 7

To translate a specific set of regions corresponding to a known set of coding sequences:


% transeq tembl:paamir amir.pep -reg=2-45,67-201,328-509 
Translate nucleic acid sequences

Go to the output files for this example

Example 8

To translate a mitochondrial sequence using the mammalian mitochondrion genetic code table:


% transeq mito.seq mito.pep -table 2 
Translate nucleic acid sequences

Go to the input files for this example
Go to the output files for this example

Command line arguments

   Standard (Mandatory) qualifiers:
  [-sequence]          seqall     Sequence database USA
  [-outseq]            seqoutall  Output sequence(s) USA

   Additional (Optional) qualifiers:
   -frame              menu       Frame(s) to translate
   -table              menu       Code to use
   -regions            range      Regions to translate.
                                  If this is left blank, then the complete
                                  sequence is translated.
                                  A set of regions is specified by a set of
                                  pairs of positions.
                                  The positions are integers.
                                  They are separated by any non-digit,
                                  non-alpha character.
                                  Examples of region specifications are:
                                  24-45, 56-78
                                  1:45, 67=99;765..888
                                  1,5,8,10,23,45,57,99
                                  Note: you should not try to use this option
                                  with any other frame than the default,
                                  -frame=1
   -trim               boolean    This removes all 'X' and '*' characters from
                                  the right end of the translation. The
                                  trimming process starts at the end and
                                  continues until the next character is not a
                                  'X' or a '*'
   -clean              boolean    This changes all STOP codon positions from
                                  the '*' character to 'X' (an unknown
                                  residue). This is useful because some
                                  programs will not accept protein sequences
                                  with '*' characters in them.

   Advanced (Unprompted) qualifiers:
   -alternative        boolean    The default definition of frame '-1' is the
                                  reverse-complement of the set of codons used
                                  in frame 1. (Frame -2 is the set of codons
                                  used by frame 2, similarly frames -3 and 3).
                                  This is a common standard, used by the
                                  Staden package and other programs. If you
                                  prefer to define frame '-1' as using the set
                                  of codons starting with the last codon of
                                  the sequence, then set this to be true.

   Associated qualifiers:

   "-sequence" associated qualifiers
   -sbegin1             integer    Start of each sequence to be used
   -send1               integer    End of each sequence to be used
   -sreverse1           boolean    Reverse (if DNA)
   -sask1               boolean    Ask for begin/end/reverse
   -snucleotide1        boolean    Sequence is nucleotide
   -sprotein1           boolean    Sequence is protein
   -slower1             boolean    Make lower case
   -supper1             boolean    Make upper case
   -sformat1            string     Input sequence format
   -sdbname1            string     Database name
   -sid1                string     Entryname
   -ufo1                string     UFO features
   -fformat1            string     Features format
   -fopenfile1          string     Features file name

   "-outseq" associated qualifiers
   -osformat2           string     Output seq format
   -osextension2        string     File name extension
   -osname2             string     Base file name
   -osdirectory2        string     Output directory
   -osdbname2           string     Database name to add
   -ossingle2           boolean    Separate file for each entry
   -oufo2               string     UFO features
   -offormat2           string     Features format
   -ofname2             string     Features file name
   -ofdirectory2        string     Output directory

   General qualifiers:
   -auto                boolean    Turn off prompts
   -stdout              boolean    Write standard output
   -filter              boolean    Read standard input, write standard output
   -options             boolean    Prompt for standard and additional values
   -debug               boolean    Write debug output to program.dbg
   -verbose             boolean    Report some/full command line options
   -help                boolean    Report command line options. More
                                  information on associated and general
                                  qualifiers can be found with -help -verbose
   -warning             boolean    Report warnings
   -error               boolean    Report errors
   -fatal               boolean    Report fatal errors
   -die                 boolean    Report deaths


Standard (Mandatory) qualifiers Allowed values Default
[-sequence]
(Parameter 1)
Sequence database USA Readable sequence(s) Required
[-outseq]
(Parameter 2)
Output sequence(s) USA Writeable sequence(s) <sequence>.format
Additional (Optional) qualifiers Allowed values Default
-frame Frame(s) to translate
1 (1)
2 (2)
3 (3)
F (Forward three frames)
-1 (-1)
-2 (-2)
-3 (-3)
R (Reverse three frames)
6 (All six frames)
1
-table Code to use
0 (Standard)
1 (Standard (with alternative initiation codons))
2 (Vertebrate Mitochondrial)
3 (Yeast Mitochondrial)
4 (Mold, Protozoan, Coelenterate Mitochondrial and Mycoplasma/Spiroplasma)
5 (Invertebrate Mitochondrial)
6 (Ciliate Macronuclear and Dasycladacean)
9 (Echinoderm Mitochondrial)
10 (Euplotid Nuclear)
11 (Bacterial)
12 (Alternative Yeast Nuclear)
13 (Ascidian Mitochondrial)
14 (Flatworm Mitochondrial)
15 (Blepharisma Macronuclear)
16 (Chlorophycean Mitochondrial)
21 (Trematode Mitochondrial)
22 (Scenedesmus obliquus)
23 (Thraustochytrium Mitochondrial)
0
-regions Regions to translate. If this is left blank, then the complete sequence is translated. A set of regions is specified by a set of pairs of positions. The positions are integers. They are separated by any non-digit, non-alpha character. Examples of region specifications are: 24-45, 56-78 1:45, 67=99;765..888 1,5,8,10,23,45,57,99 Note: you should not try to use this option with any other frame than the default, -frame=1 Sequence range Whole sequence
-trim This removes all 'X' and '*' characters from the right end of the translation. The trimming process starts at the end and continues until the next character is not a 'X' or a '*' Boolean value Yes/No No
-clean This changes all STOP codon positions from the '*' character to 'X' (an unknown residue). This is useful because some programs will not accept protein sequences with '*' characters in them. Boolean value Yes/No No
Advanced (Unprompted) qualifiers Allowed values Default
-alternative The default definition of frame '-1' is the reverse-complement of the set of codons used in frame 1. (Frame -2 is the set of codons used by frame 2, similarly frames -3 and 3). This is a common standard, used by the Staden package and other programs. If you prefer to define frame '-1' as using the set of codons starting with the last codon of the sequence, then set this to be true. Boolean value Yes/No No

Input file format

transeq reads one or more nucleic acid sequence USAs.

Input files for usage example

'tembl:paamir' is a sequence entry in the example nucleic acid database 'tembl'

Database entry: tembl:paamir

ID   PAAMIR     standard; DNA; PRO; 2167 BP.
XX
AC   X13776; M43175;
XX
SV   X13776.1
XX
DT   19-APR-1989 (Rel. 19, Created)
DT   17-FEB-1997 (Rel. 50, Last updated, Version 22)
XX
DE   Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
XX
KW   aliphatic amidase regulator; amiC gene; amiR gene.
XX
OS   Pseudomonas aeruginosa
OC   Bacteria; Proteobacteria; gamma subdivision; Pseudomonadaceae; Pseudomonas.
XX
RN   [1]
RP   1167-2167
RA   Rice P.M.;
RT   ;
RL   Submitted (16-DEC-1988) to the EMBL/GenBank/DDBJ databases.
RL   Rice P.M., EMBL, Postfach 10-2209, Meyerhofstrasse 1, 6900 Heidelberg, FRG.
XX
RN   [2]
RP   1167-2167
RX   MEDLINE; 89211409.
RA   Lowe N., Rice P.M., Drew R.E.;
RT   "Nucleotide sequence of the aliphatic amidase regulator gene of Pseudomonas
RT   aeruginosa";
RL   FEBS Lett. 246:39-43(1989).
XX
RN   [3]
RP   1-1292
RX   MEDLINE; 91317707.
RA   Wilson S., Drew R.;
RT   "Cloning and DNA seqence of amiC, a new gene regulating expression of the
RT   Pseudomonas aeruginosa aliphatic amidase, and purification of the amiC
RT   product.";
RL   J. Bacteriol. 173:4914-4921(1991).
XX
RN   [4]
RP   1-2167
RA   Rice P.M.;
RT   ;
RL   Submitted (04-SEP-1991) to the EMBL/GenBank/DDBJ databases.
RL   Rice P.M., EMBL, Postfach 10-2209, Meyerhofstrasse 1, 6900 Heidelberg, FRG.
XX
DR   SWISS-PROT; P10932; AMIR_PSEAE.
DR   SWISS-PROT; P27017; AMIC_PSEAE.
DR   SWISS-PROT; Q51417; AMIS_PSEAE.


  [Part of this file has been deleted for brevity]

FT                   phenotype"
FT                   /replace=""
FT                   /gene="amiC"
FT   misc_feature    1
FT                   /note="last base of an XhoI site"
FT   misc_feature    648..653
FT                   /note="end of 658bp XhoI fragment, deletion in  pSW3 causes
FT                   constitutive expression of amiE"
FT   conflict        1281
FT                   /replace="g"
FT                   /citation=[3]
XX
SQ   Sequence 2167 BP; 363 A; 712 C; 730 G; 362 T; 0 other;
     ggtaccgctg gccgagcatc tgctcgatca ccaccagccg ggcgacggga actgcacgat        60
     ctacctggcg agcctggagc acgagcgggt tcgcttcgta cggcgctgag cgacagtcac       120
     aggagaggaa acggatggga tcgcaccagg agcggccgct gatcggcctg ctgttctccg       180
     aaaccggcgt caccgccgat atcgagcgct cgcacgcgta tggcgcattg ctcgcggtcg       240
     agcaactgaa ccgcgagggc ggcgtcggcg gtcgcccgat cgaaacgctg tcccaggacc       300
     ccggcggcga cccggaccgc tatcggctgt gcgccgagga cttcattcgc aaccgggggg       360
     tacggttcct cgtgggctgc tacatgtcgc acacgcgcaa ggcggtgatg ccggtggtcg       420
     agcgcgccga cgcgctgctc tgctacccga ccccctacga gggcttcgag tattcgccga       480
     acatcgtcta cggcggtccg gcgccgaacc agaacagtgc gccgctggcg gcgtacctga       540
     ttcgccacta cggcgagcgg gtggtgttca tcggctcgga ctacatctat ccgcgggaaa       600
     gcaaccatgt gatgcgccac ctgtatcgcc agcacggcgg cacggtgctc gaggaaatct       660
     acattccgct gtatccctcc gacgacgact tgcagcgcgc cgtcgagcgc atctaccagg       720
     cgcgcgccga cgtggtcttc tccaccgtgg tgggcaccgg caccgccgag ctgtatcgcg       780
     ccatcgcccg tcgctacggc gacggcaggc ggccgccgat cgccagcctg accaccagcg       840
     aggcggaggt ggcgaagatg gagagtgacg tggcagaggg gcaggtggtg gtcgcgcctt       900
     acttctccag catcgatacg cccgccagcc gggccttcgt ccaggcctgc catggtttct       960
     tcccggagaa cgcgaccatc accgcctggg ccgaggcggc ctactggcag accttgttgc      1020
     tcggccgcgc cgcgcaggcc gcaggcaact ggcgggtgga agacgtgcag cggcacctgt      1080
     acgacatcga catcgacgcg ccacaggggc cggtccgggt ggagcgccag aacaaccaca      1140
     gccgcctgtc ttcgcgcatc gcggaaatcg atgcgcgcgg cgtgttccag gtccgctggc      1200
     agtcgcccga accgattcgc cccgaccctt atgtcgtcgt gcataacctc gacgactggt      1260
     ccgccagcat gggcggggga ccgctcccat gagcgccaac tcgctgctcg gcagcctgcg      1320
     cgagttgcag gtgctggtcc tcaacccgcc gggggaggtc agcgacgccc tggtcttgca      1380
     gctgatccgc atcggttgtt cggtgcgcca gtgctggccg ccgccggaag ccttcgacgt      1440
     gccggtggac gtggtcttca ccagcatttt ccagaatggc caccacgacg agatcgctgc      1500
     gctgctcgcc gccgggactc cgcgcactac cctggtggcg ctggtggagt acgaaagccc      1560
     cgcggtgctc tcgcagatca tcgagctgga gtgccacggc gtgatcaccc agccgctcga      1620
     tgcccaccgg gtgctgcctg tgctggtatc ggcgcggcgc atcagcgagg aaatggcgaa      1680
     gctgaagcag aagaccgagc agctccagga ccgcatcgcc ggccaggccc ggatcaacca      1740
     ggccaaggtg ttgctgatgc agcgccatgg ctgggacgag cgcgaggcgc accagcacct      1800
     gtcgcgggaa gcgatgaagc ggcgcgagcc gatcctgaag atcgctcagg agttgctggg      1860
     aaacgagccg tccgcctgag cgatccgggc cgaccagaac aataacaaga ggggtatcgt      1920
     catcatgctg ggactggttc tgctgtacgt tggcgcggtg ctgtttctca atgccgtctg      1980
     gttgctgggc aagatcagcg gtcgggaggt ggcggtgatc aacttcctgg tcggcgtgct      2040
     gagcgcctgc gtcgcgttct acctgatctt ttccgcagca gccgggcagg gctcgctgaa      2100
     ggccggagcg ctgaccctgc tattcgcttt tacctatctg tgggtggccg ccaaccagtt      2160
     cctcgag                                                                2167
//

Input files for usage example 8

File: mito.seq

>gi|5819095|ref|NC_001321.1| Balaenoptera physalus mitochondrion, complete genome
GTTAATTACTAATCAGCCCATGATCATAACATAACTGAGGTTTCATACATTTGGTATTTTTTTATTTTTTTTGGGGGGCT
TGCACGGACTCCCCTATGACCCTAAAGGGTCTCGTCGCAGTCAGATAAATTGTAGCTGGGCCTGGATGTATTTGTTATTT
GACTAGCACAACCAACATGTGCAGTTAAATTAATGGTTACAGGACATAGTACTCCACTATTCCCCCCGGGCTCAAAAAAC
TGTATGTCTTAGAGGACCAAACCCCCCTCCTTCCATACAATACTAACCCTCTGCTTAGATATTCACCACCCCCCTAGACA
GGCTCGTCCCTAGATTTAAAAGCCATTTTATTTATAAATCAATACTAAATCTGACACAAGCCCAATAATGAAAATACATG
AACGCCATCCCTATCCAATACGTTGATGTAGCTTAAACACTTACAAAGCAAGACACTGAAAATGTCTAGATGGGTCTAGC
CAACCCCATTGACATTAAAGGTTTGGTCCCAGCCTTTCTATTAGTTCTTAACAGACTTACACATGCAAGTATCCACATCC
CAGTGAGAACGCCCTCTAAATCATAAAGATTAAAAGGAGCGGGTATCAAGCACGCTAGCACTAGCAGCTCACAACGCCTC
GCTTAGCCACGCCCCCACGGGACACAGCAGTGATAAAAATTAAGCTATAAACGAAAGTTCGACTAAGTCATGTTAATTTA
AGGGTTGGTAAACTTCGTGCCAGCCACCGCGGTCATACGATCGACCCAAATTAATAGAAGCACGGCGTAAAGAGTGTTAA
GGAGCCACATGAAATAAAGTCAAACCTTAATTAAGCTGTAAAAAGCCCTAATTAAAATTAAGCCAAACTACGAAAGTGAC
TTTAATATAATCTGATCACACGACAGCTAAGATCCAAACTGGGATTAGATACCCCACTATGCTTAGTCGTAAACCCCAAT
AGTCACAAAACAAGACTATTCGCCAGAGTACTACTAGCAACAGCCTAAAACTCAAAGGACTTGGCGGTGCCTCATACCCA
TCTAGAGGAGCCTGTTCTGTAACCGATAAACCCCGATCAACCTCACCAACCCTTGCTACTTCAGTCTATATACCGCCATC
TTCAGCAAACCCTAAAGGGAGAAAAGTAAGCATAACCATCCTACATAAAAACGTTAGGTCAAGGTGTAACCCATGGGTTG
GGAAGTAATGGGCTACATTTTCTAAGCTAAGAACATCCCCTATACTCACACGAAAGTTTTTATGAAACTTAAAAACTAAA
GGAGGATTTAGTAGTAAATCAAGAGCAGAGTGCTTGATTGAATAAGGCCATGAGGGCACGCACACACCGCCCGTCACCCT
CCTCAAGTACCCCAGCTATAAACCCCAGTTCGTTAACTCAGGCCAAGCAATTATACGAGAGGAGACAAGTCGTAACAAGG
TAAGCATACCGGAAGGTGTGCTTGGACAAAACAAGATATAGCTTAAACAAAGCATGTAGTTTACACCTAGAAGATTCCAC
AGCCCGTGTATATCTTGAACTAGCCCTAGCCCACACCCTCCCCACCTCTACTACCACAAATCAATCAAATAAAACATTTA
CCATCCCTTCAAAGTATAGGAGATAGAAATTTAAATATCAGTGGCGCTATAGAGATAGTACCGTAAGGAAAGATGAAAGA
AAAACCTAAAAGTAATAAAAAGCAAAGCTTACCACTTGTACCTTTTGCATAATGACTTAACTAGTAATAAATTAGCAAAG
AGACCTTAAGTTAAATTACCCGAAACCAGACGAGCTACTTATGAGCAGCACCTAGAACGAACTCATCTATGTGGCAAAAT
AGTGAGAAGACTTATAAGTAGAGGTGAAAAGCCTAACGAGCCTGGTGATAGCTGGTTGTCCCTGAAAAGAATCTCAGTTC
AACATTAAATAATACTAAAAGCCCATGCCAAGCCTTAACGTATATTTAACTGTTAATCTAAAAAGGTACAGCTTTTTAGA
AATGGGTACAACCTTGACTAGAGAGTAAAATCAAACATAAACATAGTTGGCCTAAAAGCAGCCATCAATTAAGAAAGCGT
TCAAGCTCGACAACAAAATAATGTTTTAATTCCAACATTAAGTAAATCAACTCCTAGCCTGACTATTGGACTAATCTATA
CAAATATAGAAGCAATACTGTTAATATGAGTAACAAGAAATTTTTCTCCTAGCACAAGCTTACACCAGTAACTGATAATA
TACTGATAATTAACAGCAAATAAATAAAACCCAACACTAAATTATTTATTAAAATACTGTTAACCCAACACAGGCGTGCA
TTAAGGAAAGATTAAAAAAAGTAAAAGGAACTCGGCAAACACAAACCCCGCCTGTTTACCAAAAACATCACCTCTAGCAT
AACCAGTATTAGAGCACTGCCTGCCCGGTGACTAATCGTTAAACGGCCGCGGTATCCTGACCGTGCAAAGGTAGCATAAT
CACTTGTTCTCTAATTAGGGACTTGTATGAATGGCCACACGAGGGTTTTACTGTCTCTTACTTTTAATCAGTGAAATTGA
CCTCTCCGTGAAGAGGCGGAGATAACAAAATAAGACGAGAAGACCCTATGGAGCTTCAATTAATCAACCCAAAAACCATA
ACCTTAAACCACCAAGGGATAACAAAACCTTATATGGGCTGACAATTTCGGTTGGGGTGACCTCGGAGTACAAAAAACCC
TCCGAGTGATTAAAACTTAGGCCCACTAGCCAAAGTACAATATCACTTATTGATCCAATCCTTTGATCAACGGAACAAGT
TACCCTAGGGATAACAGCGCAATCCTATTCTAGAGTCCATATCGACAATAGGGTTTACGACCTCGATGTTGGATCAGGAC
ATCCTAATGGTGCAGCTGCTATTAAGGGTTCGTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACCGGAGTA
ATCCAGGTCGGTTTCTATCTATTACGCATTTCTCCCAGTACGAAAGGACAAGAGAAATAAGGCCAACTTCAAACAAGCGC
CTTCAAACAATTAATGACCTAGTCTCAACTTAATAATTAAGCGCAAACAAACCTGCCCAAGACCAGGGCCTTGTTGAGGT
GGCAGAGTTCGGTAATTGCATAAAACTTAAACTTTTACACCCAGAGGTTCAAATCCTCTCCCCAACAAAATGTTTATAAT
TAACATTCTAACACTCATTCTCCCCATCCTCCTAGCCGTAGCATTCCTAACGCTAGTAGAACGCAAAATTCTAGGCTATA
TGCAGTTCCGAAAGGGGCCAAACATCGTAGGCCCACATGGCTTACTCCAACCCTTTGCCGATGCAATTAAATTATTCACT
AAAGAACCCCTACGGCCAGCTACATCCTCAACTACTATGTTTATCATTGCACCAGTACTAGCCCTAACCCTGGCCCTCAC
TATATGAAGCCCCCTACCCATACCATACCCCCTCATTAACATAAACCTAGGAGTATTATTCATATTAGCAATATCCAGCC
TAGCCGTCTACTCCATCCTATGATCAGGCTGAGCCTCCAACTCAAAATACGCACTAATTGGAGCCCTACGAGCAGTAGCA
CAAACAATCTCATATGAGGTAACACTAGCCATTATCCTCCTATCAGTACTCCTAATAAACGGCTCCTACACCTTATCAAC
ATTAGCCACAACACAAGAACAACTATGATTACTATTCCCATCATGACCCTTAGCCATAATGTGATTCATCTCCACCCTAG
CAGAAACTAATCGAGCTCCTTTTGATCTAACAGAGGGAGAATCAGAACTCGTATCAGGCTTCAACGTAGAATATGCAGCA
GGCCCTTTCGCCCTATTCTTCCTGGCAGAATACGCCAACATCATTATAATGAATATACTCACAGCCATTTTATTCCTAGG


  [Part of this file has been deleted for brevity]

CATTGTCTTCTGCGCCTTCATCACTAGTCTAGTTCCCGCAATAGTATATCTTCACACAAACCAAGAAACACTCATCTCAA
ACTGACACTGAATCACAATCCAAACCCTCAAACTAACACTTAGCTTTAAAATAGATTACTTTTCACTTATATTTATACCA
GTAGCACTATTCATTACATGATCCATCATAGAATTCTCAATATGATATATGCACTCCGACCCCTACATCAACCAATTTTT
TAAATACTTACTCCTCTTCCTCATCACCATACTAATCCTTGTTACAGCTAACAATCTCTTCCAACTTTTCATCGGATGAG
AAGGAGTAGGAATTATATCCTTCTTACTAATTGGCTGATGATTCGGACGAACAGATGCAAATACAGCCGCCCTCCAAGCA
ATCCTATACAATCGTATCGGAGACATTGGACTCCTTGCATCAATAGCATGATTTCTCTCTAATATAAACACATGAGACCT
AGAACAAATCTTTATACTCAACCAAAACCCCTTAAATTTCCCCCTCATAGGACTCGTACTAGCCGCAGCAGGAAAATCGG
CTCAATTCGGACTCCACCCTTGACTCCCATCAGCAATAGAAGGTCCTACCCCAGTCTCAGCCCTACTCCACTCAAGCACA
ATAGTTGTAGCAGGAATCTTCTTGCTTGTCCGCTTCTACCCATTAATAGAAAATAACAAGCTAATCCAAACAGTAACCCT
CTGCTTAGGCGCTATCACAACTCTATTTACAGCCATCTGTGCCCTCACCCAAAACGACATCAAAAAAATTATTGCTTTCT
CCACCTCCAGCCAGCTAGGCCTAATAATAGTAACAATCGGCCTTAACCAACCTTACCTAGCATTCCTACACATTTGCACA
CACGCCTTCTTTAAAGCTATACTATTCCTATGTTCTGGCTCCATCATCCATAACCTAAACAACGAACAAGATATCCGAAA
AATAGGAGGGCTATTTAAGGCCCTCCCATTCACCACAACCGCCCTTATCATCGGATGTCTTGCACTAACAGGAATGCCAT
TCCTGACCGGATTCTACTCCAAAGATCCCATTATTGAAGCCGCCACTTCGTCTTATACCAACGCCTGAGCCCTATTACTG
ACCTTAATCGCCACCTCCCTTACGGCCGTCTATAGCACCCGCATCATTTTCTTTGCACTACTAGGACAACCCCGCTTCCC
TCCCTCCACAACCATTAACGAAAATAATCCACTGTTAATCAACCCTATCAAACGACTACTCGTCGGAAGTATCTTCGCTG
GCTTCATCCTATCCAACAGTATTCCCCCAATAACTACACCTTTAATAACCATACCCCTGCACTTAAAATTAACCGCCCTT
GCAATAACAACCCTAGGCTTCATCATCGCATTCGAAATTAACCTTGACACACAAAATCTAAAGCACAAGCACCCATCAAA
CTCCTTTAAATTCTCCACCTTACTAGGTTATTTCCCCACAATCATACATCGCCTACCCCCTCACCTTGACCTGTTAATAA
GCCAAAAACTAGCAACTTCCCTACTAGATCTAACTTGACTAGAAACTATTTTACCAAAAACCACAGCCCTTATCCAACTA
AAAGCCTCTACACTAACCTCTAACCAACAAGGCCTCATCAAACTCTACTTCTTATCTTTCCTCATCACCATCACCCTCAG
CATAATCTTATTTAACTACCCCGAGTAATCTCCATAATAATTACAACACTAATAAATAAAGACCAACCCGTAACAATCAC
CAACCAAACACCATAACTATATAATGCCGCAATCCCTGTAGCCTCCTCACTAAAAACCCCAGAACCCCCAGTATCATAAA
CAACCCAGTCCCCTAGTCCATCAAACTCAAACATAATCTTCACCTCCCCACTCTTCAAAGCATAAATCACAATTAAAAAC
TCCACCACCAACCCTAAAACAAATGCTCCTAGTACAACTTTATTAGAAACCCAAACCTCAGGATACTGTTCAGTAGCCAT
AGCTGTTGTATAACCAAATACTACCAGCATTCCCCCCAAATAAATCAAAAACACCATTAACCCCAAAAACGAACCACCAA
AACTCAAAATAACTCCACATCCAACACCACCACCCACAATCAACCCTAAACCCCCATAAATAGGTGAAGGCTTTGAAGAA
ACCCCCACAAAACTAATTACAAAAATAATACTTAAAATGAAAACAATATACATTATCATTATTCTCACATGGACTTCAAC
CATGACCAATGACATGAAAAATCATCGTTGTTATTCAACTACAAGAACACCAATGACCAACATCCGAAAAACACACCCAC
TAATAAAAATCGTCAACGACGCATTCGTCGATCTCCCCACCCCATCAAATATCTCTTCATGATGGAACTTCGGCTCCCTA
CTCGGCCTCTGCTTAATTATACAAATCCTAACAGGCCTATTCCTAGCAATACACTACACACCAGACACAACAACCGCCTT
CTCATCAGTCACACACATCTGCCGAGACGTGAATTACGGCTGAATTATCCGATACCTACATGCAAATGGGGCTTCTATAT
TCTTCATCTGCCTCTACGCTCACATAGGACGAGGCCTATACTACGGCTCCTACGCCTTCCGAGAAACATGAAATATTGGA
GTTATTCTACTATTCACAGTTATAGCCACCGCATTCGTAGGCTACGTCCTGCCCTGAGGACAAATATCATTCTGAGGCGC
AACTGTAATCACTAACCTCCTATCAGCAATCCCATACATTGGTACCACCCTAGTCGAATGAATCTGAGGCGGTTTCTCTG
TAGATAAAGCAACACTAACACGCTTTTTTGCCTTTCACTTTATCCTCCCCTTCATCATCCTAGCATTAGCAATTGTCCAC
CTTATTTTCCTTCACGAAACAGGATCCAACAACCCCACAGGCATCCCATCCGACATAGATAAAATCCCATTCCACCCCTA
CCACACAATTAAAGACATTCTAGGTGCCCTATTACTAATCCTAATCCTACTAATACTAACCCTATTCGCACCCGACCTAC
TTGGAGACCCAGACAACTATACCCCAGCAAACCCACTCAGTACCCCAGCACACATTAAACCAGAATGGTATTTTCTATTC
GCATACGCAATCCTACGATCAATCCCCAACAAACTAGGCGGAGTCTTAGCCCTACTACTCTCAATCCTAATCCTAGCCTT
CATCCCAATACTCCACACATCCAATCAACGAAGCATAATATTTCGACCCTTTAGCCAGTTCTTGTTCTGAGTCCTAGTCG
CAGATCTACTAACCCTAACATGGATCGGCGGCCAACCAGTAGAACACCCCTACATAATTGTAGGCCAACTCGCATCCATC
CTCTATTTCCTCTTAATTCTAGTATTAATACCAGTAACTAGTCTTATCGAGAACAAACTTATAAAATGAAGAGTCTTTGT
AGTATAATTAAATACCCCGGTTTTGTAAACCGGAAAAGGAGACAAGACACACCTCCCTAAGACTCAAGGAAGAAGTATTA
CACTCCACCATCAGCACCCAAAGCTGAAGTTCTACATAAACTATTCCCTGAAAAAGTATATTGTACAATAACCACAGGAC
CACAGTACTATGTCCGTATTGAAAATAACTTGCCTTATTAGATATTATTATGTAACTCGTGCATGCATGTACTTCCACAT
AATTAATAGCGTCTTTCCATGGGTATGAACAGATATACATGCTATGTATAATTGTGCATTCAATTATTTTCACCACGAGC
AGTTGAAGCTCGTATTAAATTTTATTAATTTTACATATTACATAATATGTATTAATAGTACAATAGCGCATGTTCTTATG
CATCCCCAGATCTATTTAAATCAAATGATTCCTATGGCCGCTCCATTAGATCACGAGCTTAGTCAGCATGCCGCGTGAAA
CCAGCAACCCGCTTGGCAGGGATCCCTCTTCTCGCACCGGGCCCATCACTCGTGGGGGTAGCTATTTAATGATCTTTATA
AGACATCTGGTTCTTACTTCAGGACCATATTAACTTAAAATCGCCCACTCGTTCCCCTTAAATAAGACATCTCGATGG

Output file format

Output files for usage example

File: amir.pep

>PAAMIR_1 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
GTAGRASARSPPAGRRELHDLPGEPGARAGSLRTALSDSHRRGNGWDRTRSGR*SACCSP
KPASPPISSARTRMAHCSRSSN*TARAASAVARSKRCPRTPAATRTAIGCAPRTSFATGG
YGSSWAATCRTRARR*CRWSSAPTRCSATRPPTRASSIRRTSSTAVRRRTRTVRRWRRT*
FATTASGWCSSARTTSIRGKATM*CATCIASTAARCSRKSTFRCIPPTTTCSAPSSASTR
RAPTWSSPPWWAPAPPSCIAPSPVATATAGGRRSPA*PPARRRWRRWRVTWQRGRWWSRL
TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTC
TTSTSTRHRGRSGWSARTTTAACLRASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTG
PPAWAGDRSHERQLAARQPARVAGAGPQPAGGGQRRPGLAADPHRLFGAPVLAAAGSLRR
AGGRGLHQHFPEWPPRRDRCAARRRDSAHYPGGAGGVRKPRGALADHRAGVPRRDHPAAR
CPPGAACAGIGAAHQRGNGEAEAEDRAAPGPHRRPGPDQPGQGVADAAPWLGRARGAPAP
VAGSDEAARADPEDRSGVAGKRAVRLSDPGRPEQ*QEGYRHHAGTGSAVRWRGAVSQCRL
VAGQDQRSGGGGDQLPGRRAERLRRVLPDLFRSSRAGLAEGRSADPAIRFYLSVGGRQPV
PRX

Output files for usage example 2

File: amir.pep

>PAAMIR_2 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
VPLAEHLLDHHQPGDGNCTIYLASLEHERVRFVRR*ATVTGEETDGIAPGAAADRPAVLR
NRRHRRYRALARVWRIARGRATEPRGRRRRSPDRNAVPGPRRRPGPLSAVRRGLHSQPGG
TVPRGLLHVAHAQGGDAGGRARRRAALLPDPLRGLRVFAEHRLRRSGAEPEQCAAGGVPD
SPLRRAGGVHRLGLHLSAGKQPCDAPPVSPARRHGARGNLHSAVSLRRRLAARRRAHLPG
ARRRGLLHRGGHRHRRAVSRHRPSLRRRQAAADRQPDHQRGGGGEDGE*RGRGAGGGRAL
LLQHRYARQPGLRPGLPWFLPGERDHHRLGRGGLLADLVARPRRAGRRQLAGGRRAAAPV
RHRHRRATGAGPGGAPEQPQPPVFAHRGNRCARRVPGPLAVARTDSPRPLCRRA*PRRLV
RQHGRGTAPMSANSLLGSLRELQVLVLNPPGEVSDALVLQLIRIGCSVRQCWPPPEAFDV
PVDVVFTSIFQNGHHDEIAALLAAGTPRTTLVALVEYESPAVLSQIIELECHGVITQPLD
AHRVLPVLVSARRISEEMAKLKQKTEQLQDRIAGQARINQAKVLLMQRHGWDEREAHQHL
SREAMKRREPILKIAQELLGNEPSA*AIRADQNNNKRGIVIMLGLVLLYVGAVLFLNAVW
LLGKISGREVAVINFLVGVLSACVAFYLIFSAAAGQGSLKAGALTLLFAFTYLWVAANQF
LE

Output files for usage example 3

File: amir.pep

>PAAMIR_4 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
SRNWLAATHR*VKANSRVSAPAFSEPCPAAAEKIR*NATQALSTPTRKLITATSRPLILP
SNQTALRNSTAPTYSRTSPSMMTIPLLLLFWSARIAQADGSFPSNS*AIFRIGSRRFIAS
RDRCWCASRSSQPWRCISNTLAWLIRAWPAMRSWSCSVFCFSFAISSLMRRADTSTGSTR
WASSGWVITPWHSSSMICESTAGLSYSTSATRVVRGVPAASSAAISSWWPFWKMLVKTTS
TGTSKASGGGQHWRTEQPMRISCKTRASLTSPGGLRTSTCNSRRLPSSELALMGAVPRPC
WRTSRRGYARRHKGRGESVRATASGPGTRRAHRFPRCAKTGGCGCSGAPPGPAPVARRCR
CRTGAAARLPPASCLRPARRGRATRSASRPPRPRR*WSRSPGRNHGRPGRRPGWRAYRCW
RSKARPPPAPLPRHSPSSPPPPRWWSGWRSAAACRRRSDGRWRDTARRCRCPPRWRRPRR
RAPGRCARRRAASRRRRDTAECRFPRAPCRRAGDTGGASHGCFPADRCSPSR*TPPARRS
GESGTPPAAHCSGSAPDRRRRCSANTRSPRRGSGSRAARRRARPPASPPCACATCSSPRG
TVPPGCE*SPRRTADSGPGRRRGPGTAFRSGDRRRRPRGSVARPRAMRHTRASARYRR*R
RFRRTAGRSAAAPGAIPSVSSPVTVAQRRTKRTRSCSRLAR*IVQFPSPGWW*SSRCSAS
GT

Output files for usage example 4

File: amir.pep

>PAAMIR_1 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
GTAGRASARSPPAGRRELHDLPGEPGARAGSLRTALSDSHRRGNGWDRTRSGR*SACCSP
KPASPPISSARTRMAHCSRSSN*TARAASAVARSKRCPRTPAATRTAIGCAPRTSFATGG
YGSSWAATCRTRARR*CRWSSAPTRCSATRPPTRASSIRRTSSTAVRRRTRTVRRWRRT*
FATTASGWCSSARTTSIRGKATM*CATCIASTAARCSRKSTFRCIPPTTTCSAPSSASTR
RAPTWSSPPWWAPAPPSCIAPSPVATATAGGRRSPA*PPARRRWRRWRVTWQRGRWWSRL
TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTC
TTSTSTRHRGRSGWSARTTTAACLRASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTG
PPAWAGDRSHERQLAARQPARVAGAGPQPAGGGQRRPGLAADPHRLFGAPVLAAAGSLRR
AGGRGLHQHFPEWPPRRDRCAARRRDSAHYPGGAGGVRKPRGALADHRAGVPRRDHPAAR
CPPGAACAGIGAAHQRGNGEAEAEDRAAPGPHRRPGPDQPGQGVADAAPWLGRARGAPAP
VAGSDEAARADPEDRSGVAGKRAVRLSDPGRPEQ*QEGYRHHAGTGSAVRWRGAVSQCRL
VAGQDQRSGGGGDQLPGRRAERLRRVLPDLFRSSRAGLAEGRSADPAIRFYLSVGGRQPV
PRX
>PAAMIR_2 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
VPLAEHLLDHHQPGDGNCTIYLASLEHERVRFVRR*ATVTGEETDGIAPGAAADRPAVLR
NRRHRRYRALARVWRIARGRATEPRGRRRRSPDRNAVPGPRRRPGPLSAVRRGLHSQPGG
TVPRGLLHVAHAQGGDAGGRARRRAALLPDPLRGLRVFAEHRLRRSGAEPEQCAAGGVPD
SPLRRAGGVHRLGLHLSAGKQPCDAPPVSPARRHGARGNLHSAVSLRRRLAARRRAHLPG
ARRRGLLHRGGHRHRRAVSRHRPSLRRRQAAADRQPDHQRGGGGEDGE*RGRGAGGGRAL
LLQHRYARQPGLRPGLPWFLPGERDHHRLGRGGLLADLVARPRRAGRRQLAGGRRAAAPV
RHRHRRATGAGPGGAPEQPQPPVFAHRGNRCARRVPGPLAVARTDSPRPLCRRA*PRRLV
RQHGRGTAPMSANSLLGSLRELQVLVLNPPGEVSDALVLQLIRIGCSVRQCWPPPEAFDV
PVDVVFTSIFQNGHHDEIAALLAAGTPRTTLVALVEYESPAVLSQIIELECHGVITQPLD
AHRVLPVLVSARRISEEMAKLKQKTEQLQDRIAGQARINQAKVLLMQRHGWDEREAHQHL
SREAMKRREPILKIAQELLGNEPSA*AIRADQNNNKRGIVIMLGLVLLYVGAVLFLNAVW
LLGKISGREVAVINFLVGVLSACVAFYLIFSAAAGQGSLKAGALTLLFAFTYLWVAANQF
LE
>PAAMIR_3 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
YRWPSICSITTSRATGTARSTWRAWSTSGFASYGAERQSQERKRMGSHQERPLIGLLFSE
TGVTADIERSHAYGALLAVEQLNREGGVGGRPIETLSQDPGGDPDRYRLCAEDFIRNRGV
RFLVGCYMSHTRKAVMPVVERADALLCYPTPYEGFEYSPNIVYGGPAPNQNSAPLAAYLI
RHYGERVVFIGSDYIYPRESNHVMRHLYRQHGGTVLEEIYIPLYPSDDDLQRAVERIYQA
RADVVFSTVVGTGTAELYRAIARRYGDGRRPPIASLTTSEAEVAKMESDVAEGQVVVAPY
FSSIDTPASRAFVQACHGFFPENATITAWAEAAYWQTLLLGRAAQAAGNWRVEDVQRHLY
DIDIDAPQGPVRVERQNNHSRLSSRIAEIDARGVFQVRWQSPEPIRPDPYVVVHNLDDWS
ASMGGGPLP*APTRCSAACASCRCWSSTRRGRSATPWSCS*SASVVRCASAGRRRKPSTC
RWTWSSPAFSRMATTTRSLRCSPPGLRALPWWRWWSTKAPRCSRRSSSWSATA*SPSRSM
PTGCCLCWYRRGASARKWRS*SRRPSSSRTASPARPGSTRPRCC*CSAMAGTSARRTSTC
RGKR*SGASRS*RSLRSCWETSRPPERSGPTRTITRGVSSSCWDWFCCTLARCCFSMPSG
CWARSAVGRWR*STSWSAC*APASRST*SFPQQPGRAR*RPER*PCYSLLPICGWPPTSS
S

Output files for usage example 5

File: amir.pep

>PAAMIR_4 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
SRNWLAATHR*VKANSRVSAPAFSEPCPAAAEKIR*NATQALSTPTRKLITATSRPLILP
SNQTALRNSTAPTYSRTSPSMMTIPLLLLFWSARIAQADGSFPSNS*AIFRIGSRRFIAS
RDRCWCASRSSQPWRCISNTLAWLIRAWPAMRSWSCSVFCFSFAISSLMRRADTSTGSTR
WASSGWVITPWHSSSMICESTAGLSYSTSATRVVRGVPAASSAAISSWWPFWKMLVKTTS
TGTSKASGGGQHWRTEQPMRISCKTRASLTSPGGLRTSTCNSRRLPSSELALMGAVPRPC
WRTSRRGYARRHKGRGESVRATASGPGTRRAHRFPRCAKTGGCGCSGAPPGPAPVARRCR
CRTGAAARLPPASCLRPARRGRATRSASRPPRPRR*WSRSPGRNHGRPGRRPGWRAYRCW
RSKARPPPAPLPRHSPSSPPPPRWWSGWRSAAACRRRSDGRWRDTARRCRCPPRWRRPRR
RAPGRCARRRAASRRRRDTAECRFPRAPCRRAGDTGGASHGCFPADRCSPSR*TPPARRS
GESGTPPAAHCSGSAPDRRRRCSANTRSPRRGSGSRAARRRARPPASPPCACATCSSPRG
TVPPGCE*SPRRTADSGPGRRRGPGTAFRSGDRRRRPRGSVARPRAMRHTRASARYRR*R
RFRRTAGRSAAAPGAIPSVSSPVTVAQRRTKRTRSCSRLAR*IVQFPSPGWW*SSRCSAS
GT
>PAAMIR_5 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
LEELVGGHPQIGKSE*QGQRSGLQRALPGCCGKDQVERDAGAQHADQEVDHRHLPTADLA
QQPDGIEKQHRANVQQNQSQHDDDTPLVIVLVGPDRSGGRLVSQQLLSDLQDRLAPLHRF
PRQVLVRLALVPAMALHQQHLGLVDPGLAGDAVLELLGLLLQLRHFLADAPRRYQHRQHP
VGIERLGDHAVALQLDDLREHRGAFVLHQRHQGSARSPGGEQRSDLVVVAILENAGEDHV
HRHVEGFRRRPALAHRTTDADQLQDQGVADLPRRVEDQHLQLAQAAEQRVGAHGSGPPPM
LADQSSRLCTTT*GSGRIGSGDCQRTWNTPRASISAMREDRRLWLFWRSTRTGPCGASMS
MSYRCRCTSSTRQLPAACAARPSNKVCQ*AASAQAVMVAFSGKKPWQAWTKARLAGVSML
EK*GATTTCPSATSLSIFATSASLVVRLAIGGRLPSP*RRAMARYSSAVPVPTTVEKTTS
ARAW*MRSTARCKSSSEGYSGM*ISSSTVPPCWRYRWRITWLLSRG*M*SEPMNTTRSP*
WRIRYAASGALFWFGAGPP*TMFGEYSKPS*GVG*QSSASARSTTGITALRVCDM*QPTR
NRTPRLRMKSSAHSR*RSGSPPGSWDSVSIGRPPTPPSRFSCSTASNAPYACERSISAVT
PVSENSRPISGRSWCDPIRFLSCDCRSAPYEANPLVLQARQVDRAVPVARLVVIEQMLGQ
RYX
>PAAMIR_6 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
RGTGWRPPTDR*KRIAGSALRPSASPARLLRKRSGRTRRRRSARRPGS*SPPPPDR*SCP
ATRRH*ETAPRQRTAEPVPA**RYPSCYCSGRPGSLRRTARFPATPERSSGSARAASSLP
ATGAGAPRARPSHGAASATPWPG*SGPGRRCGPGAARSSASASPFPR*CAAPIPAQAAPG
GHRAAG*SRRGTPAR*SARAPRGFRTPPAPPG*CAESRRRAAQRSRRGGHSGKCW*RPRP
PARRRLPAAASTGAPNNRCGSAARPGRR*PPPAG*GPAPATRAGCRAASWRSWERSPAHA
GGPVVEVMHDDIRVGANRFGRLPADLEHAARIDFRDARRQAAVVVLALHPDRPLWRVDVD
VVQVPLHVFHPPVACGLRGAAEQQGLPVGRLGPGGDGRVLREETMAGLDEGPAGGRIDAG
EVRRDHHLPLCHVTLHLRHLRLAGGQAGDRRPPAVAVATGDGAIQLGGAGAHHGGEDHVG
ARLVDALDGALQVVVGGIQRNVDFLEHRAAVLAIQVAHHMVAFPRIDVVRADEHHPLAVV
ANQVRRQRRTVLVRRRTAVDDVRRILEALVGGRVAEQRVGALDHRHHRLARVRHVAAHEE
PYPPVANEVLGAQPIAVRVAAGVLGQRFDRATADAALAVQLLDREQCAIRVRALDIGGDA
GFGEQQADQRPLLVRSHPFPLL*LSLSAVRSEPARAPGSPGRSCSSRRPAGGDRADARPA
VP

Output files for usage example 6

File: amir.pep

>PAAMIR_1 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
GTAGRASARSPPAGRRELHDLPGEPGARAGSLRTALSDSHRRGNGWDRTRSGR*SACCSP
KPASPPISSARTRMAHCSRSSN*TARAASAVARSKRCPRTPAATRTAIGCAPRTSFATGG
YGSSWAATCRTRARR*CRWSSAPTRCSATRPPTRASSIRRTSSTAVRRRTRTVRRWRRT*
FATTASGWCSSARTTSIRGKATM*CATCIASTAARCSRKSTFRCIPPTTTCSAPSSASTR
RAPTWSSPPWWAPAPPSCIAPSPVATATAGGRRSPA*PPARRRWRRWRVTWQRGRWWSRL
TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTC
TTSTSTRHRGRSGWSARTTTAACLRASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTG
PPAWAGDRSHERQLAARQPARVAGAGPQPAGGGQRRPGLAADPHRLFGAPVLAAAGSLRR
AGGRGLHQHFPEWPPRRDRCAARRRDSAHYPGGAGGVRKPRGALADHRAGVPRRDHPAAR
CPPGAACAGIGAAHQRGNGEAEAEDRAAPGPHRRPGPDQPGQGVADAAPWLGRARGAPAP
VAGSDEAARADPEDRSGVAGKRAVRLSDPGRPEQ*QEGYRHHAGTGSAVRWRGAVSQCRL
VAGQDQRSGGGGDQLPGRRAERLRRVLPDLFRSSRAGLAEGRSADPAIRFYLSVGGRQPV
PRX
>PAAMIR_2 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
VPLAEHLLDHHQPGDGNCTIYLASLEHERVRFVRR*ATVTGEETDGIAPGAAADRPAVLR
NRRHRRYRALARVWRIARGRATEPRGRRRRSPDRNAVPGPRRRPGPLSAVRRGLHSQPGG
TVPRGLLHVAHAQGGDAGGRARRRAALLPDPLRGLRVFAEHRLRRSGAEPEQCAAGGVPD
SPLRRAGGVHRLGLHLSAGKQPCDAPPVSPARRHGARGNLHSAVSLRRRLAARRRAHLPG
ARRRGLLHRGGHRHRRAVSRHRPSLRRRQAAADRQPDHQRGGGGEDGE*RGRGAGGGRAL
LLQHRYARQPGLRPGLPWFLPGERDHHRLGRGGLLADLVARPRRAGRRQLAGGRRAAAPV
RHRHRRATGAGPGGAPEQPQPPVFAHRGNRCARRVPGPLAVARTDSPRPLCRRA*PRRLV
RQHGRGTAPMSANSLLGSLRELQVLVLNPPGEVSDALVLQLIRIGCSVRQCWPPPEAFDV
PVDVVFTSIFQNGHHDEIAALLAAGTPRTTLVALVEYESPAVLSQIIELECHGVITQPLD
AHRVLPVLVSARRISEEMAKLKQKTEQLQDRIAGQARINQAKVLLMQRHGWDEREAHQHL
SREAMKRREPILKIAQELLGNEPSA*AIRADQNNNKRGIVIMLGLVLLYVGAVLFLNAVW
LLGKISGREVAVINFLVGVLSACVAFYLIFSAAAGQGSLKAGALTLLFAFTYLWVAANQF
LE
>PAAMIR_3 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
YRWPSICSITTSRATGTARSTWRAWSTSGFASYGAERQSQERKRMGSHQERPLIGLLFSE
TGVTADIERSHAYGALLAVEQLNREGGVGGRPIETLSQDPGGDPDRYRLCAEDFIRNRGV
RFLVGCYMSHTRKAVMPVVERADALLCYPTPYEGFEYSPNIVYGGPAPNQNSAPLAAYLI
RHYGERVVFIGSDYIYPRESNHVMRHLYRQHGGTVLEEIYIPLYPSDDDLQRAVERIYQA
RADVVFSTVVGTGTAELYRAIARRYGDGRRPPIASLTTSEAEVAKMESDVAEGQVVVAPY
FSSIDTPASRAFVQACHGFFPENATITAWAEAAYWQTLLLGRAAQAAGNWRVEDVQRHLY
DIDIDAPQGPVRVERQNNHSRLSSRIAEIDARGVFQVRWQSPEPIRPDPYVVVHNLDDWS
ASMGGGPLP*APTRCSAACASCRCWSSTRRGRSATPWSCS*SASVVRCASAGRRRKPSTC
RWTWSSPAFSRMATTTRSLRCSPPGLRALPWWRWWSTKAPRCSRRSSSWSATA*SPSRSM
PTGCCLCWYRRGASARKWRS*SRRPSSSRTASPARPGSTRPRCC*CSAMAGTSARRTSTC
RGKR*SGASRS*RSLRSCWETSRPPERSGPTRTITRGVSSSCWDWFCCTLARCCFSMPSG
CWARSAVGRWR*STSWSAC*APASRST*SFPQQPGRAR*RPER*PCYSLLPICGWPPTSS
S
>PAAMIR_4 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
SRNWLAATHR*VKANSRVSAPAFSEPCPAAAEKIR*NATQALSTPTRKLITATSRPLILP
SNQTALRNSTAPTYSRTSPSMMTIPLLLLFWSARIAQADGSFPSNS*AIFRIGSRRFIAS
RDRCWCASRSSQPWRCISNTLAWLIRAWPAMRSWSCSVFCFSFAISSLMRRADTSTGSTR
WASSGWVITPWHSSSMICESTAGLSYSTSATRVVRGVPAASSAAISSWWPFWKMLVKTTS
TGTSKASGGGQHWRTEQPMRISCKTRASLTSPGGLRTSTCNSRRLPSSELALMGAVPRPC
WRTSRRGYARRHKGRGESVRATASGPGTRRAHRFPRCAKTGGCGCSGAPPGPAPVARRCR
CRTGAAARLPPASCLRPARRGRATRSASRPPRPRR*WSRSPGRNHGRPGRRPGWRAYRCW
RSKARPPPAPLPRHSPSSPPPPRWWSGWRSAAACRRRSDGRWRDTARRCRCPPRWRRPRR
RAPGRCARRRAASRRRRDTAECRFPRAPCRRAGDTGGASHGCFPADRCSPSR*TPPARRS
GESGTPPAAHCSGSAPDRRRRCSANTRSPRRGSGSRAARRRARPPASPPCACATCSSPRG
TVPPGCE*SPRRTADSGPGRRRGPGTAFRSGDRRRRPRGSVARPRAMRHTRASARYRR*R
RFRRTAGRSAAAPGAIPSVSSPVTVAQRRTKRTRSCSRLAR*IVQFPSPGWW*SSRCSAS
GT
>PAAMIR_5 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
LEELVGGHPQIGKSE*QGQRSGLQRALPGCCGKDQVERDAGAQHADQEVDHRHLPTADLA
QQPDGIEKQHRANVQQNQSQHDDDTPLVIVLVGPDRSGGRLVSQQLLSDLQDRLAPLHRF
PRQVLVRLALVPAMALHQQHLGLVDPGLAGDAVLELLGLLLQLRHFLADAPRRYQHRQHP
VGIERLGDHAVALQLDDLREHRGAFVLHQRHQGSARSPGGEQRSDLVVVAILENAGEDHV
HRHVEGFRRRPALAHRTTDADQLQDQGVADLPRRVEDQHLQLAQAAEQRVGAHGSGPPPM
LADQSSRLCTTT*GSGRIGSGDCQRTWNTPRASISAMREDRRLWLFWRSTRTGPCGASMS
MSYRCRCTSSTRQLPAACAARPSNKVCQ*AASAQAVMVAFSGKKPWQAWTKARLAGVSML
EK*GATTTCPSATSLSIFATSASLVVRLAIGGRLPSP*RRAMARYSSAVPVPTTVEKTTS
ARAW*MRSTARCKSSSEGYSGM*ISSSTVPPCWRYRWRITWLLSRG*M*SEPMNTTRSP*
WRIRYAASGALFWFGAGPP*TMFGEYSKPS*GVG*QSSASARSTTGITALRVCDM*QPTR
NRTPRLRMKSSAHSR*RSGSPPGSWDSVSIGRPPTPPSRFSCSTASNAPYACERSISAVT
PVSENSRPISGRSWCDPIRFLSCDCRSAPYEANPLVLQARQVDRAVPVARLVVIEQMLGQ
RYX
>PAAMIR_6 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
RGTGWRPPTDR*KRIAGSALRPSASPARLLRKRSGRTRRRRSARRPGS*SPPPPDR*SCP
ATRRH*ETAPRQRTAEPVPA**RYPSCYCSGRPGSLRRTARFPATPERSSGSARAASSLP
ATGAGAPRARPSHGAASATPWPG*SGPGRRCGPGAARSSASASPFPR*CAAPIPAQAAPG
GHRAAG*SRRGTPAR*SARAPRGFRTPPAPPG*CAESRRRAAQRSRRGGHSGKCW*RPRP
PARRRLPAAASTGAPNNRCGSAARPGRR*PPPAG*GPAPATRAGCRAASWRSWERSPAHA
GGPVVEVMHDDIRVGANRFGRLPADLEHAARIDFRDARRQAAVVVLALHPDRPLWRVDVD
VVQVPLHVFHPPVACGLRGAAEQQGLPVGRLGPGGDGRVLREETMAGLDEGPAGGRIDAG
EVRRDHHLPLCHVTLHLRHLRLAGGQAGDRRPPAVAVATGDGAIQLGGAGAHHGGEDHVG
ARLVDALDGALQVVVGGIQRNVDFLEHRAAVLAIQVAHHMVAFPRIDVVRADEHHPLAVV
ANQVRRQRRTVLVRRRTAVDDVRRILEALVGGRVAEQRVGALDHRHHRLARVRHVAAHEE
PYPPVANEVLGAQPIAVRVAAGVLGQRFDRATADAALAVQLLDREQCAIRVRALDIGGDA
GFGEQQADQRPLLVRSHPFPLL*LSLSAVRSEPARAPGSPGRSCSSRRPAGGDRADARPA
VP

Output files for usage example 7

File: amir.pep

>PAAMIR_1 Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation
VPLAEHLLDHHQPGEASLEHERVRFVRR*ATVTGEETDGIAPGAAADRPAVLRNRRHRRY
VRRGLHSQPGGTVPRGLLHVAHAQGGDAGGRARRRAALLPDPLRGLRVFAEHRLRRSGAE
X

Output files for usage example 8

File: mito.pep

>NC_001321.1_1 Balaenoptera physalus mitochondrion, complete genome
VNY*SAHDHNMTEVSYIWYFFIFFGGLARTPLWP**VSSQSDKL*LGLDVFVIWLAQPTC
AVKLMVTGHSTPLFPPGSKNCMS**TKPPSFHTMLTLCLDIHHPP*QARP*I*KPFYL*I
NTKSDTSPMMKMHERHPYPMRWCSLNTYKA*HWKCLDGSSQPHWH**FGPSLSISS*QTY
TCKYPHPSENAL*IMKIK*SGYQAR*H*QLTTPRLATPPRDTAVMKIKL*TKVRLSHVNL
*VGKLRASHRGHTIDPN**KHGVKSVKEPHEMKSNLN*AVKSPN*N*AKLRKWL*YNLIT
RQL*SKLGLDTPLCLVVNPNSHKT*LFA*VLLATA*NSKDLAVPHTHLEEPVL*PMNPDQ
PHQPLLLQSMYRHLQQTLKGEK*A*PSYMKTLGQGVTHGLGSNGLHFLS*EHPLYSHESF
YET*KLKEDLVVNQEQSAWLNKAM*ARTHRPSPSSSTPAMNPSSLTQAKQLYE**QVVT*
*AYRKVCLDKT*YSLNKACSLHLEDSTARVYLELALAHTLPTSTTTNQSNKTFTIPSKY*
**KFKYQWRY*DSTV*KDE*KT*K**KAKLTTCTFCMMT*LVMN*Q*DLKLNYPKPDELL
MSST*NELIYVAK*WEDL*VEVKSLTSLVMAGCPWKESQFNIK*Y*KPMPSLNVYLTVNL
K*YSFLEMGTTLT*E*NQT*T*LA*KQPSIKKAFKLDNKMMF*FQH*VNQLLAWLLD*SM
QM*KQYC*YE*QEIFLLAQAYTSNW*YTDN*QQMNKTQH*IIY*NTVNPTQACIKE*LKK
VKGTRQTQTPPVYQKHHL*HNQY*STACPVTNR*TAAVSWPCKGSMITCSLI*DLYEWPH
EGFTVSYF*SVKLTSPW*GGDNKM*REDPMELQLINPKTMTLNHQGMTKPYMGWQFRLGW
PRSTKNPPSD*NLGPLAKVQYHLLIQSFDQRNKLP*G*QRNPILESMSTMGFTTSMLDQD
ILMVQLLL*VRLFND*SPTWSEF*PE*S*SVSIYYAFLPVRKDK*NKANFKQAPSNN*WP
SLNLMIKRKQTCP*PGPCWGG*VR*LHKT*TFTP*GSNPLPNKMFMINILTLILPILLAV
AFLTLVERKILGYMQFRKGPNIVGPHGLLQPFADAIKLFTKEPLRPATSSTTMFIIAPVL
ALTLALTMWSPLPMPYPLINMNLGVLFMLAMSSLAVYSILWSGWASNSKYALIGALRAVA
QTISYEVTLAIILLSVLLMNGSYTLSTLATTQEQLWLLFPSWPLAMMWFISTLAETNRAP
FDLTEGESELVSGFNVEYAAGPFALFFLAEYANIIMMNMLTAILFLGTFHNPHNPELYTA
NLIIKTLLLTMSFLWIRASYPRFRYDQLMHLLWKNFLPLTLALCMWHISLPIMTASIPPQ
T*EMCLMKELLW*SK***PKSSYF*NN*NRTYP*EFKVLRATMLHYNLQ*GQLNKLSGPY
PENVGSYPSHTNKPINPYYPPDNPYP*YNNGSHQLSLTISLNWLRNEHNSLHPYHNKKSY
SPGH*SFYQVPPNTSHCFRTPHNSSHH*LNAL*PMNYYKTI*PNSIHTHNSSPSHQTGIS
PLPLLSS*SNT*YPPNH*PNPINMTKTSSLINPMPNFTIN*PTPNINHILTFHLN**L*W
TKPNTTSKNHSLLINCPH*MNNGHSTM*SNPNITKSTNLHHNNLHHIYIIYPKLNYHYIV
TVSNLK*NTRHHNPYHTHFTLD**TPTTIGVYTQMNNYS*TNKKWYTHCTNIHSHYSITQ
PMLLYTSYLLHSTNTISLHK*YKNKMTIQLHKTNSSPTNSNRNFHYATTPHTNTLNPTMG
V*VKP*P*AFKALSKYNLLNSCPM*TA*LYLTSIECKSNALIKLNPH*IGGMHLPRIFS*
QLNTLINWLQSTSPAA*KK*REKSRQDLKLLPWICNSKWSFTTGLGKK*TQPLSLDLQSN
TYSAILPMFMNRWLFSTNHKDIGTLYLLFGAWAGMVGTGLSLLIRAELGQPGTLIGDDQV
YNVLVTAHAFVMIFFMVMPIMIGGFGNWLVPLMIGAPDMAFPRMNNMSFWLLPPSFLLLM
ASSMIEAGAGTGWTVYPPLAGNLAHAGASVDLTIFSLHLAGVSSILGAINFITTIINMKP
PAMTQYQTPLFVWSVLVTAVLLLLSLPVLAAGITMLLTDRNLNTTFFDPAGGGDPILYQH
LFWFFGHPEVYILILPGFGMISHIVTYYSGKKEPFGYMGMVWAMVSIGFLGFIVWAHHMF
TVGMDVDTRAYFTSATMIIAIPTGVKVFSWLATLHGGNIKWSPALMWALGFIFLFTVGGL
TGIVLANSSLDIVLHDTYYVVAHFHYVLSMGAVFAIMGGFVHWFPLFSGYTLNTTWAKIH
FMIMFVGVNLTFFPQHFLGLSGMPRRYSDYPDAYTTWNTISSMGSFISLTAVMLMIFIIW
EAFTSKREVLAVDLTSTNLEWLNGCPPPYHTFEEPAFVNPKWS*KEGIEPSPIGFKPTS*
LLCLSL*T*Y**NLM*LCQS*VTSENPVYLHGMSIPT*FP*CSITHH**APTLSRSYTNN
RFSN*LFSSLHYYPNAYNQINTY*YN*RP*S*NCLNYPPSHYLNFNCLAFITDPLHN*RS
Q*PLPHCKNN*SPMMLKLWVYRLR*PKLRLLYNPNI*PKA**TTII*S**PSCLTY*NNN
PNISLI**RTPLMGRTLLGPKN*CNP*TPKPNNLNINTT*PILWTML*DLRLKPQFHTNC
P*TSTP*SLWKMICINTMTSL*S*ISINLLS**L*VYNSP*WYATI*YINMTPYYSINTL
NPLCIIPIKNLKALLFP*PQTSTYQNTKTTSSLKHHMNENLFAPFMIPVMLGIPITTLII
ILPSMLFPAPNRLINNRTIAIQQWLTKLTSKQLMNVHSPKGQTWSLMLISLFLFIASTNL
LGMLPHSFTPTTQLSMNVGMAIPLWAGTVTTGFRNKTKMSLAHLLPQGTPTFLIPMLVII
ETISLFIQPVAWAVRLTANITAGHLLMHLIGETTLALMNINLFSAFITFTILALLTILEF
AVALIQAYVFTLLVSLYLHDNT*WPTKPTHTT**TPALDPSPELYQPF**HQA*LYDFTS
TQYSY*L*ACQQMF*QYTNDGEMSSEKAPSKAIMHQPSK*AYDTE*FYLSSQKSYFSQAS
SEPSTTQALPLLQN*ADVDHQQASAL*IP*KFPFSTPPYY*PLAYLLPEPTMAW*KETAN
TYFKHSSSQLH*ASTSPYYKHQSTTKPLSQSQTESTAPPSL*PQAFMGYM*SLDLLSLSS
VSYVK*NSTSHQTTTLALNVPLDTDIS*TSYDYFFMYLSIDEVPSPFSINKYNWLPIS*F
RCTPKKNNKPSTNTTNKYNTSPTTRIHRLLTSTTKRMR*KNKPMWMRIWPH*ISPPTLLH
KILLGGHYFPSLWL*NRSLTPPSLSNSVKQPKHNTHNSLILNLPTSSQPSLWMNS**P*M
SWMWYLV*DKTSDFDPLDCDQIHNYQMTLIHMNILMAFSMSLMGLLMYRSHLMSALLCLE
GMMLSLFVLAALTILSSHFTLANMMPIILLVFAACEAAIGLALLVMVSNTYGTDYVQNLN
LLQC*NLLFLQSY*YP*PDYQKMT*SELTPQPTVY*LASQAFSSSINSTTTALTTH*YSS
PTPFLPHSWS*QYDSFP*Y**QVNPISSKNHQSEKNSTLRY*SHYKPS*L*HLLPLN*SY
FMSYLKPH*SLPLSLSLAGATKQNDSMPDYTSYSMH*LDLSHY**H*YIYKMQQDP*TFY
SYNTELNHYLRPDPTSSYD*PA**PS**KYLSMDYTFDCPKHT*KPPLQAP*SLQPYY*N
LEAMAYYELHPYSIP*QNT*HTHFLYSLFEE*S*PALSVYVKQT*NH*LHIPQLVT*HSS
SQLSSSKPPEAM*GPLP**LPTASHPPYYSVWQTRTTNAFMAEP*FCPEAYKSFYH**PV
DDY*QA*QILHYPQPST*SENYS*SCRSSHDQIPLFS**EQML*LLLSTLYMY*S*HNVA
NTHTTSMMSPLPSHESMP**PYTLFPSCSYH*TLKSS*ALSTVSMV*K*R*FVKLTMEDQ
NFLLTEKVLQELLIHAPTPNSCGFFKLLQDSSYPLVLGAKKLVQLQMKVMNLFTSFTLLT
LLILTTPIMMSHTGSHVNNKYQSYVKNIVFCAFITSLVPAMVYLHTNQETLISNWHWITI
QTLKLTLSFKMDYFSLMFMPVALFITWSIMEFSMWYMHSDPYINQFFKYLLLFLITMLIL
VTANNLFQLFIGWEGVGIMSFLLIGWWFGRTDANTAALQAILYNRIGDIGLLASMAWFLS
NMNTWDLEQIFMLNQNPLNFPLMGLVLAAAGKSAQFGLHPWLPSAMEGPTPVSALLHSST
MVVAGIFLLVRFYPLMENNKLIQTVTLCLGAITTLFTAICALTQNDIKKIIAFSTSSQLG
LMMVTIGLNQPYLAFLHICTHAFFKAMLFLCSGSIIHNLNNEQDIRKMGGLFKALPFTTT
ALIIGCLALTGMPFLTGFYSKDPIIEAATSSYTNAWALLLTLIATSLTAVYSTRIIFFAL
LGQPRFPPSTTINENNPLLINPIKRLLVGSIFAGFILSNSIPPMTTPLMTMPLHLKLTAL
AMTTLGFIIAFEINLDTQNLKHKHPSNSFKFSTLLGYFPTIMHRLPPHLDLLMSQKLATS
LLDLTWLETILPKTTALIQLKASTLTSNQQGLIKLYFLSFLITITLSMILFNYPE*SP**
LQH**MKTNP*QSPTKHHNYMMPQSL*PPH*KPQNPQYHKQPSPLVHQTQT*SSPPHSSK
HKSQLKTPPPTLKQMLLVQLY*KPKPQDTVQ*P*LLYNQMLPAFPPNKSKTPLTPKTNHQ
NSK*LHIQHHHPQSTLNPHK*VKALKKPPQN*LQK*YLKWKQYTLSLFSHGLQPWPMTWK
IIVVIQLQEHQWPTSEKHTH**KSSTTHSSISPPHQMSLHDGTSAPYSASA*LYKS*QAY
S*QYTTHQTQQPPSHQSHTSAETWITAELSDTYMQMGLLYSSSASTLT*DEAYTTAPTPS
EKHEMLELFYYSQL*PPHS*ATSCPEDKYHSEAQL*SLTSYQQSHTLVPP*SNESEAVSL
*MKQH*HAFLPFTLSSPSSS*H*QLSTLFSFTKQDPTTPQASHPT*MKSHSTPTTQLKTF
*VPYY*S*SY*Y*PYSHPTYLETQTTMPQQTHSVPQHTLNQNGIFYSHTQSYDQSPTN*A
ES*PYYSQS*S*PSSQYSTHPINEA*YFDPLASSCSES*SQIY*P*HGSAANQ*NTPT*L
*ANSHPSSISS*F*Y*YQ*LVLS*TNL*NEESL*YN*MPRFCKPEKET*HTSL*LKEEVL
HSTISTQSWSST*TIPWKSMLYNNH*TTVLCPYWK*LALLDIIM*LVHACTST*LMASFH
GYEQMYMLCMIVHSIIFTTSSWSSY*ILLILHIT*YVLMVQ*RMFLCIP*SI*IKWFLWP
LH*ITSLVSMPRETSNPLG*DPSSRTGPITRGGSYLMIFM*HLVLTSGPY*LKIAHSFPL
NKTSRW

One or more peptide sequences are written out.

The names of the resulting protein sequences are formed from the name of the input nucleic acid sequence with '_' and the translation frame appended to it. Thus a nucleic acid sequence with the name 'XYZ' franslated in all 6 frame would produce protein sequences with the names: 'XYZ_1', 'XYZ_2', 'XYZ_3', 'XYZ_4', 'XYZ_5', 'XYZ_6'.

If regions are specified, they are taken to be translated in frame 1 and so the output name would be 'XYZ_1'.

Data files

EMBOSS data files are distributed with the application and stored in the standard EMBOSS data directory, which is defined by the EMBOSS environment variable EMBOSS_DATA.

To see the available EMBOSS data files, run:

% embossdata -showall

To fetch one of the data files (for example 'Exxx.dat') into your current directory for you to inspect or modify, run:


% embossdata -fetch -file Exxx.dat

Users can provide their own data files in their own directories. Project specific files can be put in the current directory, or for tidier directory listings in a subdirectory called ".embossdata". Files for all EMBOSS runs can be put in the user's home directory, or again in a subdirectory called ".embossdata".

The directories are searched in the following order:

The EMBOSS REBASE restriction enzyme data files are stored iin directory 'data/REBASE/*' under the EMBOSS installation directory.

These files must first be set up using the program 'rebaseextract'. Running 'rebaseextract' may be the job of your system manager.

The data files are stored in the REBASE directory of the standard EMBOSS data directory. The names are:

The column information is described at the top of the data files

The reported enzyme from any one group of isoschizomers (the prototype) is specified in the REBASE database and the information is held in the data file 'embossre.equ'. You may edit this file to set your own preferred prototype, if you wish.

The format of the file "embossre.equ" is
Enzyme-name Prototype-name

i.e. two columns of enzyme names separated by a space. The first name of the pair of enzymes is the name that is not preferred and the second is the preferred (prototype) name.

Notes

The reverse frame '-1' is defined as the translation you get when you use the reverse-complement of the sequence with the same codon phase as the codon in frame '1'.

Thus the sequence ACTGG in frame 1 is the translation of the codons ACT,GG; the translation of frame -1 uses these same codons, reverse complemented:

  forward sense          ACT GG
  reverse sense          TGA CC

  reverse-complement     CC AGT
  frame -1 translation       S

Frame -1 is the translation of CCAGT (the reverse complement of ACTGG) using the codon 'AGT' (the first bases 'CC' are ignored). The result is the peptide 'S'.

Similarly frame -2 is the phase used by frame 2, 'CAG T' (the first base 'C' is ignored). The last base cannot be successfully translated and is output as the unknown residue 'X'. The result is the peptide 'QX'.

Frame -3 is the phase used by frame 3, 'CCA GT'. The last two bases will translate to 'V' as it does not matter what the next base is. (GTA, GTC, GTG, GTT all code for 'V'). The result is the peptide 'PV'.

The alternative way of generating the reverse translation frames used by some people is that frame -1 is made by taking the frame '1' of the reverse complement. There is no correspondance betwen the codons used in frame 1 and -1, 2 and -2, 3 and -3; the codons used change with the length modulus 3.

There does not appear to be a convention on which definition to use.
The Staden package uses the same convention as this program.
The GCG package sneakily avoids the problem by naming the frames using letters (a, b, c, d, e, f)

If you really need to define frame -1 as the frame given when you reverse complement the sequence and then start translating at the first frame in the resulting sequence, then use the '-alternative' qualifier.

(Reverse sense translations are a biological nonsense, really, but can be very useful in practice.)

References

None.

Warnings

When translation using non-standard genetic code table, always check the table carefully for deviations from your particular organism's code.

When using the '-regions' option, you should always leave the '-frames' option at the default of frame '1'. If you change the frame while specifying a region to translate, then the regions will be offset by 1 or 2 bases, which is not what you want.

Diagnostic Error Messages

Several warning messages about malformed region specifications:

Exit status

It exits with status 0, unless a region is badly constructed.

Known bugs

When using the '-regions' option, you should always leave the '-frames' option at the default of frame '1'. If you change the frame while specifying a region to translate, then the regions will be offset by 1 or 2 bases, which is not what you want.

See also

Program nameDescription
backtranseqBack translate a protein sequence
coderetExtract CDS, mRNA and translations from feature tables
plotorfPlot potential open reading frames
prettyseqOutput sequence with translated ranges
remapDisplay sequence with restriction sites, translation etc
showorfPretty output of DNA translations
showseqDisplay a sequence with features, translation etc
sixpackDisplay a DNA sequence with 6-frame translation and ORFs

Author(s)

Gary Williams (gwilliam © rfcgr.mrc.ac.uk)
MRC Rosalind Franklin Centre for Genomics Research Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK

History

Written 4 March 1999 - Gary Williams
July 2001 - changed definition of reverse frames to use the same codon phase as forward frames. - Gary Williams

June 2002 - added '-alternative' qualifier - Gary Williams

Target users

This program is intended to be used by everyone and everything, from naive users to embedded scripts.

Comments

None