distmat

 

Function

Creates a distance matrix from multiple alignments

Description

distmat calculates the evolutionary distances between every pair of sequences in a multiple alignment. The sequences need to be aligned before running this program. The quality of the alignment is of paramount importance in obtaining meaningful information from this analysis. This application calculates a distance matrix for the set of sequences in the alignment. The distances are expressed in terms of the number of substitutions per 100 bases or amino acids.

As sequence diverge so does the probability of there being multiple substitutions at any one site in the alignment increase. The distance will then be an underestimate of the true evolutionary distance between the sequences. Therefore, there are a number of methods for correcting the observed substitution rate for the occurence of multiple substutions.

For nucleotides, the "-position" flag allows the user to choose base positions to analyse in each codon, i.e. 123 (all bases), 12 (the first two bases), 1, 2, or 3 individual bases.

Uncorrected distances

This method does not make any corrections for multiple substitutions. Therefore, the score will be an underestimate of the distance between the sequences. This will not be less significant for highly similar sets of sequences.

S = m/(npos + gaps*gap_penalty)                                  (1)

m 	    - score of matches (1 for an exact match, a fraction for partial
	      matches and 0 for no match)
npos	    - number of positions included in m
gaps        - number of gaps in the sequences
gap_penalty - the score given to a gapped position

D = uncorrected distance = p-distance = 1-S          (2)

The score of match includes all exact matches. For nucleotides, if the flag "-ambiguous" is used then partial matches are included in the score. For example, a match of M (A or C) with A will increment m by 0.5 (0.5*1.0). Gaps are not included in the calculation unless a non zero value is given with "-gapweight". It should be noted that end gaps and internal gaps will be weighted by the same amount. So it is recommended that this be used with "-sbegin"and "-send" to specify the start and end of the region to calculate the distance from.

Multiple Substitution correction algorithms

Jukes-Cantor

This can be used for nucleotide and protein sequences.

distance = -b ln (1-D/b)

D - uncorrected distance
b - constant. b= 3/4 for nucleotides and 19/20 for proteins.

Partial matches and gap positions can be taken into account in the calculation of D, by setting the "-ambiguous" and "-gapweight" flags (see "uncorrected distance" method).

Reference:
"Phylogenetic Inference", Swofford, Olsen, Waddell, and Hillis, in Molecular Systematics, 2nd ed., Sinauer Ass., Inc., 1996, Ch. 11.

Tajima-Nei

This method is only for nucleotide sequences. It uses the same equation as Jukes-Cantor, but the b-parameter is not constant. Also, only exact matches are considered in the calculation of the match score and gap positions are ignored.

A = 1, T = 2, C = 3, G = 4

b = 0.5(1.- Sum(i=A,G)(fraction[i]^2  + D^2/h)

h = Sum(i=A,C)Sum(k=T,G) (0.5 * pair_frequency[i,k]^2/(fraction[i]*fraction[k]))

distance = -b ln(1.-D/b)

pair_frequency[i,k]   - frequency of the i and k base pair at sites in
			the alignement of the pair of sequences.
fraction[i]           - average content of the base i in both sequences

Reference:
F. Tajima and M. Nei, Mol. Biol. Evol. 1984, 1, 269.

Kimura Two-Parameter distance

This method is only for nucleotide sequences. This uses the principle that transition substitutions (purine-purine and pyrimidine-purine) are more likely than transversion substitutions (purine-pyprimidine). Purine being the nucleic acid constituent of A and G, and pyrimidine being the nucleic acid derivative of the bases C, T and U. Gaps are ignored and abiguous symbols other than R (purine) and Y (pyrimidine) are ingnored.

P = transitions/npos
Q = transversions/npos

npos - number of positions scored

distance = -0.5 ln[ (1-2P-Q)*sqrt(1-2Q)]

Reference:
M. kimura, J. Mol. Evol. 1980, 16, 111.

Tamura

This method is only for nucleotide sequences. This method uses transition and transversion rates and takes into account the deviation of GC content from the expected value of 50 %. Gap and ambiguous positions are ignored.

P = transitions/npos
Q = transversions/npos

npos - number of positions scored

GC1 = GC fraction in sequence 1
GC2 = GC fraction in sequence 2
C = GC1 + GC2 - 2*GC1*GC2

distance = -C ln(1-P/C-Q) - 0.5(1-C) ln(1-2Q)

Reference:
K. Tamura, Mol. Biol. Evol. 1992, 9, 678.

Jin-Nei Gamma distance

This method applies to nucleotides only. This again uses transition and transversion rates. As with the Kimura two parameter method, gaps and ambiguous symbols other than R and Y are not oncluded in the score. The shape parameter, i.e. "a", is the square of the inverse of the coefficient of variation of the average substitution,

L = average substituition = transition_rate + 2 * transversion_rate
a = (average L)^2/(variance of L)

P = transitions/npos
Q = transversions/npos

npos - number of positions scored

distance = 0.5 * a ((1-2P-Q)^(-1/a) + 0.5 (1-2Q)^(-1/a) -3/2)

It is suggested [Jin et al.], in general, that the distance be calculated with an a-value of 1. However, the user can specify their own value, using the "-parametera" option, or calculate for each pair of sequence, using "-calculatea".

Reference:
L. Jin and M. Nei, Mol. Biol. Evol. 1990, 7, 82.

Kimura Protein distance

This method is used for proteins only. Gaps are ignored and only exact matches and ambiguity codes contribute to the match score.

S = m/npos

m  - exact match
npos - number of positions scored

D = 1-S
distance = -ln(1 - D - 0.2D^2)

Reference:
M. Kimura, The Neutral Theory of Molecular Evolution, Camb. Uni. Press, Camb., 1983.

Usage

Here is a sample session with distmat


% distmat pax.align 
Creates a distance matrix from multiple alignments
Multiple substitution correction methods for proteins
         0 : Uncorrected
         1 : Jukes-Cantor
         2 : Kimura Protein
Method to use [0]: 2
Output file [pax.distmat]: 

Go to the input files for this example
Go to the output files for this example

Command line arguments

   Standard (Mandatory) qualifiers (* if not always prompted):
  [-sequence]          seqset     File containing a sequence alignment.
*  -nucmethod          menu       Multiple substitution correction methods for
                                  nucleotides.
*  -protmethod         menu       Multiple substitution correction methods for
                                  proteins.
  [-outfile]           outfile    Output file name

   Additional (Optional) qualifiers (* if not always prompted):
*  -ambiguous          boolean    Option to use the ambiguous codes in the
                                  calculation of the Jukes-Cantor method or if
                                  the sequences are proteins.
*  -gapweight          float      Option to weight gaps in the uncorrected
                                  (nucleotide) and Jukes-Cantor distance
                                  methods.
*  -position           integer    Choose base positions to analyse in each
                                  codon i.e. 123 (all bases), 12 (the first
                                  two bases), 1, 2, or 3 individual bases.
*  -calculatea         boolean    This will force the calculation of parameter
                                  'a' in the Jin-Nei Gamma distance
                                  calculation, otherwise the default is 1.0
                                  (see -parametera option).
*  -parametera         float      User defined parameter 'a' to be use in the
                                  Jin-Nei Gamma distance calculation. The
                                  suggested value to be used is 1.0 (Jin et
                                  al.) and this is the default.

   Advanced (Unprompted) qualifiers: (none)
   Associated qualifiers:

   "-sequence" associated qualifiers
   -sbegin1             integer    Start of each sequence to be used
   -send1               integer    End of each sequence to be used
   -sreverse1           boolean    Reverse (if DNA)
   -sask1               boolean    Ask for begin/end/reverse
   -snucleotide1        boolean    Sequence is nucleotide
   -sprotein1           boolean    Sequence is protein
   -slower1             boolean    Make lower case
   -supper1             boolean    Make upper case
   -sformat1            string     Input sequence format
   -sdbname1            string     Database name
   -sid1                string     Entryname
   -ufo1                string     UFO features
   -fformat1            string     Features format
   -fopenfile1          string     Features file name

   "-outfile" associated qualifiers
   -odirectory2         string     Output directory

   General qualifiers:
   -auto                boolean    Turn off prompts
   -stdout              boolean    Write standard output
   -filter              boolean    Read standard input, write standard output
   -options             boolean    Prompt for standard and additional values
   -debug               boolean    Write debug output to program.dbg
   -verbose             boolean    Report some/full command line options
   -help                boolean    Report command line options. More
                                  information on associated and general
                                  qualifiers can be found with -help -verbose
   -warning             boolean    Report warnings
   -error               boolean    Report errors
   -fatal               boolean    Report fatal errors
   -die                 boolean    Report deaths


Standard (Mandatory) qualifiers Allowed values Default
[-sequence]
(Parameter 1)
File containing a sequence alignment. Readable set of sequences Required
-nucmethod Multiple substitution correction methods for nucleotides.
0 (Uncorrected)
1 (Jukes-Cantor)
2 (Kimura)
3 (Tamura)
4 (Tajima-Nei)
5 (Jin-Nei Gamma)
0
-protmethod Multiple substitution correction methods for proteins.
0 (Uncorrected)
1 (Jukes-Cantor)
2 (Kimura Protein)
0
[-outfile]
(Parameter 2)
Output file name Output file <sequence>.distmat
Additional (Optional) qualifiers Allowed values Default
-ambiguous Option to use the ambiguous codes in the calculation of the Jukes-Cantor method or if the sequences are proteins. Boolean value Yes/No No
-gapweight Option to weight gaps in the uncorrected (nucleotide) and Jukes-Cantor distance methods. Any numeric value 0.
-position Choose base positions to analyse in each codon i.e. 123 (all bases), 12 (the first two bases), 1, 2, or 3 individual bases. Any integer value 123
-calculatea This will force the calculation of parameter 'a' in the Jin-Nei Gamma distance calculation, otherwise the default is 1.0 (see -parametera option). Boolean value Yes/No No
-parametera User defined parameter 'a' to be use in the Jin-Nei Gamma distance calculation. The suggested value to be used is 1.0 (Jin et al.) and this is the default. Any numeric value 1.0
Advanced (Unprompted) qualifiers Allowed values Default
(none)

Input file format

It reads in a normal multiple sequence alignment file.

The quality of the alignment is of paramount importance in obtaining meaningful information from this analysis.

Input files for usage example

File: pax.align

PileUp



   MSF:  603  Type: P    Check:  9004   .. 

 Name: PAX4_HUMAN oo  Len:  603  Check:  6594  Weight:  11.2
 Name: PAX6_HUMAN oo  Len:  603  Check:  7176  Weight:  9.1
 Name: PAX3_HUMAN oo  Len:  603  Check:  7760  Weight:  9.5
 Name: PAX7_HUMAN oo  Len:  603  Check:  4677  Weight:  13.7
 Name: PAX1_HUMAN oo  Len:  603  Check:  9671  Weight:  8.7
 Name: PAX9_HUMAN oo  Len:  603  Check:   565  Weight:  12.0
 Name: PAX2_HUMAN oo  Len:  603  Check:  9553  Weight:  8.7
 Name: PAX5_HUMAN oo  Len:  603  Check:   448  Weight:  11.2
 Name: PX8A_HUMAN oo  Len:  603  Check:  6763  Weight:  7.5
 Name: PX8D_HUMAN oo  Len:  603  Check:  5797  Weight:  7.9

//



PAX4_HUMAN      .......... .......... .........M HQDGISSMNQ LGGLFVNGRP 
PAX6_HUMAN      .......... .......... .......... MQNSHSGVNQ LGGVFVNGRP 
PAX3_HUMAN      MTTLAGAVPR MMRPGPGQNY PRSGFPLEVS TPLGQGRVNQ LGGVFINGRP 
PAX7_HUMAN      MAALPGTVPR MMRPAPGQNY PRTGFPLEVS TPLGQGRVNQ LGGVFINGRP 
PAX1_HUMAN      .......... .......... .......... MEQTYGEVNQ LGGVFVNGRP 
PAX9_HUMAN      .......... .......... .......... MEPAFGEVNQ LGGVFVNGRP 
PAX2_HUMAN      .......... ........MD MHCKADPFSA MHPGHGGVNQ LGGVFVNGRP 
PAX5_HUMAN      .......... ........MD LEKNYPTPRT SRTGHGGVNQ LGGVFVNGRP 
PX8A_HUMAN      .......... .......... .....MPHNS IRSGHGGLNQ LGGAFVNGRP 
PX8D_HUMAN      .......... .......... .....MPHNS IRSGHGGLNQ LGGAFVNGRP 


PAX4_HUMAN      LPLDTRQQIV RLAVSGMRPC DISRILKVSN GCVSKILGRY YRTGVLEPKG 
PAX6_HUMAN      LPDSTRQKIV ELAHSGARPC DISRILQVSN GCVSKILGRY YETGSIRPRA 
PAX3_HUMAN      LPNHIRHKIV EMAHHGIRPC VISRQLRVSH GCVSKILCRY QETGSIRPGA 
PAX7_HUMAN      LPNHIRHKIV EMAHHGIRPC VISRQLRVSH GCVSKILCRY QETGSIRPGA 
PAX1_HUMAN      LPNAIRLRIV ELAQLGIRPC DISRQLRVSH GCVSKILARY NETGSILPGA 
PAX9_HUMAN      LPNAIRLRIV ELAQLGIRPC DISRQLRVSH GCVSKILARY NETGSILPGA 
PAX2_HUMAN      LPDVVRQRIV ELAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIKPGV 
PAX5_HUMAN      LPDVVRQRIV ELAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIKPGV 
PX8A_HUMAN      LPEVVRQRIV DLAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIRPGV 
PX8D_HUMAN      LPEVVRQRIV DLAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIRPGV 


PAX4_HUMAN      IGGSKPR.LA TPPVVARIAQ LKGECPALFA WEIQRQLCAE GLCTQDKTPS 
PAX6_HUMAN      IGGSKPR.VA TPEVVSKIAQ YKRECPSIFA WEIRDRLLSE GVCTNDNIPS 
PAX3_HUMAN      IGGSKPKQVT TPDVEKKIEE YKRENPGMFS WEIRDKLLKD AVCDRNTVPS 
PAX7_HUMAN      IGGSKPRQVA TPDVEKKIEE YKRENPGMFS WEIRDRLLKD GHCDRSTVPS 
PAX1_HUMAN      IGGSKPR.VT TPNVVKHIRD YKQGDPGIFA WEIRDRLLAD GVCDKYNVPS 


  [Part of this file has been deleted for brevity]

PX8A_HUMAN      VSSSSSTPSS LSSSAFLDLQ QVGSGVPPFN AFPHAASVYG QFTGQALLSG 
PX8D_HUMAN      ....KSAPGS RPS....... .....MP... .FPMLPPCTG SSRARPSSQG 


PAX4_HUMAN      .......... .......... .....ERCLS DTPPKACLKP CWDCGSFLLP 
PAX6_HUMAN      .......... .......... .SFTMANNLP MQPPVPSQTS SYSCMLPTSP 
PAX3_HUMAN      NGL.SPQVM. .......... GLLTNHGGVP HQPQTDYALS PLTGGLEPTT 
PAX7_HUMAN      NGL.SPQVM. .......... SILGNPSAVP PQPQADFSIS PLHGGLDSAT 
PAX1_HUMAN      .......... .......... GAGVAVHGGE LAAAMTFKHR EGTDRKPP.. 
PAX9_HUMAN      .......... .......... ......HNCD IPASLAFKGM QAARE..... 
PAX2_HUMAN      .......... .......... GSYPTSTLAG MVPGSEFSGN PYSHPQYTAY 
PAX5_HUMAN      .......... .......... GSYSAPTLTG MVPGSEFSGS PYSHPQYSSY 
PX8A_HUMAN      REMVGPTLPG YPPHIPTSGQ GSYASSAIAG MVAGSEYSGN AYGHTPYSSY 
PX8D_HUMAN      ERWWGPRCP. .......... DTHPTSPPAD RAAMPPLPSQ AWWQEVN... 


PAX4_HUMAN      VIAPSCVDVA WP.CLDASLA HHLIGGAGKA TPTHFS.... .......... 
PAX6_HUMAN      SVNGRSYDTY TPPHMQTHMN SQPMGTSGTT STGLISPGVS VPVQVPGSEP 
PAX3_HUMAN      TVSASCSQRL DHMKSLDSLP TSQSYCPPTY STTGYSMDPV TGYQYGQYGQ 
PAX7_HUMAN      SISASCSQRA DSIKPGDSLP TSQAYCPPTY STTGYSVDPV AGYQYGQYGQ 
PAX1_HUMAN      ..SSGSKAPD ALSSLH.... ....GLPIPA STS....... .......... 
PAX9_HUMAN      ..GSHSVTAS AL........ .......... .......... .......... 
PAX2_HUMAN      NEAWRFSNPA LLSSPYYYSA APR.SAPAAR AAAYDRH... .......... 
PAX5_HUMAN      NDSWRFPNPG LLGSPYYYSA AARGAAPPAA ATAYDRH... .......... 
PX8A_HUMAN      SEAWGFPNSS LLSSPYYYSS TSRPSAPPTT ATAFDHL... .......... 
PX8D_HUMAN      ..TLAMPMAT PPTPP..... TARPGASPTP AC........ .......... 


PAX4_HUMAN      .....HWP.. .......... .......... .......... .......... 
PAX6_HUMAN      DMS.QYWPRL Q......... .......... .......... .......... 
PAX3_HUMAN      S...KPWTF. .......... .......... .......... .......... 
PAX7_HUMAN      SECLVPWASP VPIPSPTPRA SCLFMESYKV VSGWGMSISQ MEKLKSSQME 
PAX1_HUMAN      .......... .......... .......... .......... .......... 
PAX9_HUMAN      .......... .......... .......... .......... .......... 
PAX2_HUMAN      .......... .......... .......... .......... .......... 
PAX5_HUMAN      .......... .......... .......... .......... .......... 
PX8A_HUMAN      .......... .......... .......... .......... .......... 
PX8D_HUMAN      .......... .......... .......... .......... .......... 


PAX4_HUMAN      ...
PAX6_HUMAN      ...
PAX3_HUMAN      ...
PAX7_HUMAN      QFT
PAX1_HUMAN      ...
PAX9_HUMAN      ...
PAX2_HUMAN      ...
PAX5_HUMAN      ...
PX8A_HUMAN      ...
PX8D_HUMAN      ...

Output file format

The output from the program is a file containing a matrix of the calculated distances between each of the input aligned sequences. The distances are expressed in terms of the number of substitutions per 100 bases or amino acids.

Output files for usage example

File: pax.distmat

Distance Matrix
---------------

Using the Kimura correction method
Gap weighting is 0.000000

	    1	    2	    3	    4	    5	    6	    7	    8	    9	    10
	  0.00	 96.15	137.48	128.72	161.14	160.37	157.55	154.23	164.32	152.68		PAX4_HUMAN 1
		  0.00	111.86	109.96	156.25	149.70	143.75	135.71	150.60	146.87		PAX6_HUMAN 2
			  0.00	 26.21	131.54	143.54	162.95	151.39	163.56	159.78		PAX3_HUMAN 3
				  0.00	145.45	138.76	158.79	149.96	167.26	161.82		PAX7_HUMAN 4
					  0.00	 44.29	120.84	123.00	131.69	130.22		PAX1_HUMAN 5
						  0.00	123.56	130.21	131.64	130.17		PAX9_HUMAN 6
							  0.00	 36.43	 53.12	 64.32		PAX2_HUMAN 7
								  0.00	 60.88	 73.82		PAX5_HUMAN 8
									  0.00	 20.37		PX8A_HUMAN 9
										  0.00		PX8D_HUMAN 10

Data files

None.

Notes

None.

References

See the following for details of the methods used:

  1. "Phylogenetic Inference", Swofford, Olsen, Waddell, and Hillis, in Molecular Systematics, 2nd ed., Sinauer Ass., Inc., 1996, Ch. 11.
  2. F. Tajima and M. Nei, Mol. Biol. Evol. 1984, 1, 269.
  3. M. Kimura, J. Mol. Evol. 1980, 16, 111.
  4. K. Tamura, Mol. Biol. Evol. 1992, 9, 678.
  5. L. Jin and M. Nei, Mol. Biol. Evol. 1990, 7, 82.
  6. M. Kimura, The Neutral Theory of Molecular Evolution, Camb. Uni. Press, Camb., 1983.

Warnings

The quality of the alignment is of paramount importance in obtaining meaningful information from this analysis.

Diagnostic Error Messages

None.

Exit status

It always exits with status 0.

Known bugs

None.

See also

Program nameDescription

Author(s)

Tim Carver (tcarver © rfcgr.mrc.ac.uk)
MRC Rosalind Franklin Centre for Genomics Research Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK

History

Written (March 2001) - Tim Carver

Target users

This program is intended to be used by everyone and everything, from naive users to embedded scripts.

Comments

None